Dilogarithms, Regulators and p-adic L-functions.
On étudie quelques propriétés différentiables de l’espace , quotient du tore par un hyperplan irrationnel . On montre d’une part que le groupe des composantes connexes de Diff est isomorphe au groupe des unités de l’algèbre des matrices à coefficients entiers qui stabilisent , et d’autre part que ce groupe est isomorphe au groupe des unités d’un ordre d’un corps de nombres algébriques.
We determine all cyclic extensions of prime degree over a -regular number field containing the -roots of unity which are also -regular. We classify these extensions according to the ramification index of the wild place in and to the -valuation of the relative class number (which is the quotient of the ordinary class numbers of and ). We study the case where the is odd prime, since the even case was studien by R. Berger. Our genus theory methods rely essentially on G. Gras...
Let be a number field with ring of integers . For a fixed prime number and the étale wild kernels are defined as kernels of certain localization maps on the -fold twist of the -adic étale cohomology groups of . These groups are finite and coincide for with the -part of the classical wild kernel . They play a role similar to the -part of the -class group of . For class groups, Galois co-descent in a cyclic extension is described by the ambiguous class formula given by genus theory....
Pour un corps de nombres contenant une racine primitive -ième de l’unité, nous proposons une condition suffisante, en termes de , pour la validité de la conjecture de Greenberg généralisée. Celle-ci s’applique pour les corps cyclotomiques vérifiant certaines conditions, par exemple .
Using Hausmann and Vogel's homology sphere bundle interpretation of algebraic K-theory, we construct K-theory invariants by a theory of characteristic classes for flat bundles. It is shown that the Borel classes are detected this way, as well as the rational K-theory of integer group rings of finite groups.