Tame kernels of cubic cyclic fields
1. Introduction. Let F be a number field and the ring of its integers. Many results are known about the group , the tame kernel of F. In particular, many authors have investigated the 2-Sylow subgroup of . As compared with real quadratic fields, the 2-Sylow subgroups of for imaginary quadratic fields F are more difficult to deal with. The objective of this paper is to prove a few theorems on the structure of the 2-Sylow subgroups of for imaginary quadratic fields F. In our Ph.D. thesis (see...
Let F/E be a Galois extension of number fields with Galois group . In this paper, we give some expressions for the order of the Sylow p-subgroups of tame kernels of F and some of its subfields containing E, where p is an odd prime. As applications, we give some results about the order of the Sylow p-subgroups when F/E is a Galois extension of number fields with Galois group .
Soit un corps de nombres contenant et muni d’un groupe d’automorphismes d’ordre étranger à ; pour toute représentation -irréductible de , de caractère , et tout -module , soit rg l’entier maximum tel que contienne . Nous établissons par exemple la formule générale explicite suivante :où et sont des ensembles finis disjoints de places de tels que contienne les places au-dessus de , où est le groupe de classes généralisées qui correspond, par le corps de classes, au...
We give exhaustive list of biquadratic fields and without -exotic symbol, i.e. for which the -rank of the Hilbert kernel (or wild kernel) is zero. Such are logarithmic principals [J3]. We detail an exemple of this technical numerical exploration and quote the family of theories and results we utilize. The -rank of tame, regular and wild kernel of -theory are connected with local and global problem of embedding in a -extension. Global class field theory can describe the -rank of the Hilbert...