Some remarks on conjectures about cyclotomic fields and -groups of
Soient un corps de nombres, son anneau d’entiers et un groupe d’automorphismes de . L’objet de cet article est l’étude de en tant que -module sans hypothèse de ramification modérée. On montre que la classe de est triviale dans certains groupes de Grothendieck dépendant de l’ensemble des nombres premiers sauvagement ramifiés dans .
Étant donné un corps de nombres et un nombre premier , soit le sous-module de -torsion du groupe de Galois de la -extension abélienne -ramifiée maximale de . On se propose d’étudier la structure de module galoisien de . Si vérifie la conjecture de Leopoldt, contient un sous-module formé des racines -primaires de l’unité semi-locales quotientées par les racines -primaires de l’unité globales, et le quotient de par ce sous-module peut s’interpréter de deux façons : soit comme les...