An arithmetic proof of Pop`s Theorem concerning Galois groups of function fields over number fields. Michael Spiess (1996) Journal für die reine und angewandte Mathematik
An arithmetic site for the rings of integers of algebraic number fields. Alexander Schmidt (1996) Inventiones mathematicae
An Artin Character and Represenattions of Primes by Binary Quadratic Forms. Pierre Kaplan, K.S. Williams (1980/1981) Manuscripta mathematica
An Artin Character and Representations of Primes by Binary Quadratic Forms II. F. Halter-Koch, P. Kaplan (1982) Manuscripta mathematica
An Artin Character and Representations of Primes by Binary Quadratic Forms III. Halter-Koch, Franz (1985) Manuscripta mathematica
An asymptotic formula relating the Siegel zero and the class number of quadratic fields Dorian Goldfeld (1975) Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
An asymptotic inequality concerning primes in contours for the case of quadratic number fields Douglas Hensley (1975) Acta Arithmetica
An average form of Artin's conjecture P.-J. Stephens (1971) Mémoires de la Société Mathématique de France
An effective estimate for the density of zeros of Hecke-Landau zeta-functions K. Bartz, T. Fryska (1989) Acta Arithmetica
An effective order of Hecke-Landau zeta functions near the line σ=1, II (some applications) K. Bartz (1989) Acta Arithmetica
An effective order of Hecke-Landau zeta functions near the line σ = 1. I K. Bartz (1988) Acta Arithmetica
An effective solution of a certain diophantine problem U. Zannier (1995) Rendiconti del Seminario Matematico della Università di Padova
An elementary identity in the theory of Hecke L-functions. Uwe Weselmann (1989) Inventiones mathematicae
An elementary proof of the Mazur-Tate-Teitelbaum conjecture for elliptic curves. Kobayashi, Shinichi (2007) Documenta Mathematica
An explicit formula for the Mahler measure of a family of 3 -variable polynomials Chris J. Smyth (2002) Journal de théorie des nombres de Bordeaux An explicit formula for the Mahler measure of the 3 -variable Laurent polynomial a + b x - 1 + c y + ( a + b x + c y ) z is given, in terms of dilogarithms and trilogarithms.