Displaying 21 – 40 of 3416

Showing per page

A combinatorial interpretation of Serre's conjecture on modular Galois representations

Adriaan Herremans (2003)

Annales de l’institut Fourier

We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic p , by their counterparts in the theory of modular symbols.

A comparison of elliptic units in certain prime power conductor cases

Ulrich Schmitt (2015)

Acta Arithmetica

The aim of this paper is to compare two modules of elliptic units, which arise in the study of elliptic curves E over quadratic imaginary fields K with complex multiplication by K , good ordinary reduction above a split prime p and prime power conductor (over K). One of the modules is a special case of those modules of elliptic units studied by K. Rubin in his paper [Invent. Math. 103 (1991)] on the two-variable main conjecture (without p-adic L-functions), and the other module is a smaller one,...

A computer algorithm for finding new euclidean number fields

Roland Quême (1998)

Journal de théorie des nombres de Bordeaux

This article describes a computer algorithm which exhibits a sufficient condition for a number field to be euclidean for the norm. In the survey [3] p 405, Franz Lemmermeyer pointed out that 743 number fields where known (march 1994) to be euclidean (the first one, , discovered by Euclid, three centuries B.C.!). In the first months of 1997, we found more than 1200 new euclidean number fields of degree 4, 5 and 6 with a computer algorithm involving classical lattice properties of the embedding of...

Currently displaying 21 – 40 of 3416