Displaying 741 – 760 of 3416

Showing per page

Density of some sequences modulo 1

Artūras Dubickas (2012)

Colloquium Mathematicae

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer a ≥ 2 the sequence of fractional parts a / n n = 1 is everywhere dense in the interval [0,1]. We prove a similar result for all Pisot numbers and Salem numbers α and show that for each c > 0 and each sufficiently large N, every subinterval of [0,1] of length c N - 0 . 475 contains at least one fractional part Q(αⁿ)/n, where Q is a nonconstant polynomial in ℤ[z] and n is an integer satisfying 1 ≤ n ≤ N.

Descente et parallélogramme galoisiens

Richard Massy, Sylvie Monier-Derviaux (1999)

Journal de théorie des nombres de Bordeaux

Soit p un nombre premier impair. Soit D / J une p -extension galoisienne de corps ne contenant pas les racines p -ièmes de l’unité : J μ p = 1 . Notons G le groupe de Galois de D / J et Φ ( G ) son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions D / J telles que Φ ( G ) soit d’ordre p .

Currently displaying 741 – 760 of 3416