A note on Catalan's equation
The cross number κ(a) can be defined for any element a of a Krull monoid. The property κ(a) = 1 is important in the study of algebraic numbers with factorizations of distinct lengths. The arithmetic meaning of the weaker property, κ(a) ∈ ℤ, is still unknown, but it does define a semigroup which may be interesting in its own right. This paper studies some arithmetic(divisor theory) and analytic(distribution of elements with a given norm) properties of that semigroup and a related semigroup of ideals....
In this note we consider projective limits of Sinnott and Washington groups of circular units in the cyclotomic -extension of an abelian field. A concrete example is given to show that these two limits do not coincide in general.
For an algebraic number field and a prime , define the number to be the maximal number such that there exists a Galois extension of whose Galois group is a free pro--group of rank . The Leopoldt conjecture implies , ( denotes the number of complex places of ). Some examples of and with have been known so far. In this note, the invariant is studied, and among other things some examples with are given.
We study the behaviour of the absolute Weil height of algebraic numbers in certain infinite extensions of . In particular, we obtain a Northcott type property for infinite abelian extensions of finite exponent and also a Bogomolov type property for certain fields which are a -adic analog of totally real fields. Moreover, we obtain a non-archimedean analog of a uniform distribution theorem of Bilu in the archimedean case.