A note on the Diophantine equation .
This article is a short version of the paper published in J. Number Theory 145 (2014) but we add new results and a brief discussion about the Torsion Conjecture. Consider the family of superelliptic curves (over ℚ) , and its Jacobians , where 2 < q < p are primes. We give the full (resp. partial) characterization of the torsion part of (resp. ). The main tools are computations of the zeta function of (resp. ) over for primes l ≡ 1,2,4,8,11 (mod 15) (resp. for primes l ≡ -1 (mod qp))...
Le théorème de Belyi affirme que sur toute courbe algébrique lisse projective et géométriquement connexe, définie sur , il existe une fonction non ramifiée en dehors de . Nous montrons que cette fonction peut être choisie sans automorphismes, c’est-à-dire telle que pour tout automorphisme non trivial de , on ait . Nous en déduisons que si est une extension finie de , toute -classe d’isomorphisme de courbes algébriques lisses projectives géométriquement connexes peut être caractérisée...