A propos d'une conjecture arithmétique sur le groupe de Chow d'une surface rationnelle
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves for x → ∞ asymptotically like . We prove, among other results, that for all integers n₁,n₂ with 1 < n₁|n₂.
Let K be an algebraic number field with non-trivial class group G and be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let denote the number of non-zero principal ideals with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that behaves, for x → ∞, asymptotically like . In this article, it is proved that for every prime p, , and it is also proved that if and m is large enough. In particular, it is shown that for...
1. Introduction. Number fields with the same zeta function are said to be arithmetically equivalent. Arithmetically equivalent fields share much of the same properties; for example, they have the same degrees, discriminants, number of both real and complex valuations, and prime decomposition laws (over ℚ). They also have isomorphic unit groups and determine the same normal closure over ℚ [6]. Strangely enough, it has been shown (for example [4], or more recently [6] and [7]) that this does...
Lafforgue has proposed a new approach to the principle of functoriality in a test case, namely, the case of automorphic induction from an idele class character of a quadratic extension. For technical reasons, he considers only the case of function fields and assumes the data is unramified. In this paper, we show that his method applies without these restrictions. The ground field is a number field or a function field and the data may be ramified.