Displaying 81 – 100 of 116

Showing per page

On the computation of Hermite-Humbert constants for real quadratic number fields

Michael E. Pohst, Marcus Wagner (2005)

Journal de Théorie des Nombres de Bordeaux

We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields ( 13 ) and ( 17 ) . Finally we compute the Hermite-Humbert constant for the number field ( 13 ) .

On the computation of quadratic 2 -class groups

Wieb Bosma, Peter Stevenhagen (1996)

Journal de théorie des nombres de Bordeaux

We describe an algorithm due to Gauss, Shanks and Lagarias that, given a non-square integer D 0 , 1 mod 4 and the factorization of D , computes the structure of the 2 -Sylow subgroup of the class group of the quadratic order of discriminant D in random polynomial time in log D .

Prime ideal factorization in a number field via Newton polygons

Lhoussain El Fadil (2021)

Czechoslovak Mathematical Journal

Let K be a number field defined by an irreducible polynomial F ( X ) [ X ] and K its ring of integers. For every prime integer p , we give sufficient and necessary conditions on F ( X ) that guarantee the existence of exactly r prime ideals of K lying above p , where F ¯ ( X ) factors into powers of r monic irreducible polynomials in 𝔽 p [ X ] . The given result presents a weaker condition than that given by S. K. Khanduja and M. Kumar (2010), which guarantees the existence of exactly r prime ideals of K lying above p . We further specify...

Regulators of rank one quadratic twists

Christophe Delaunay, Xavier-François Roblot (2008)

Journal de Théorie des Nombres de Bordeaux

We investigate the regulators of elliptic curves with rank 1 in some families of quadratic twists of a fixed elliptic curve. In particular, we formulate some conjectures on the average size of these regulators. We also describe an efficient algorithm to compute explicitly some of the invariants of a rank one quadratic twist of an elliptic curve (regulator, order of the Tate-Shafarevich group, etc.) and we discuss the numerical data that we obtain and compare it with our predictions.

Relaxed algorithms for p -adic numbers

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf (2011)

Journal de Théorie des Nombres de Bordeaux

Current implementations of p -adic numbers usually rely on so called zealous algorithms, which compute with truncated p -adic expansions at a precision that can be specified by the user. In combination with Newton-Hensel type lifting techniques, zealous algorithms can be made very efficient from an asymptotic point of view.In the similar context of formal power series, another so called lazy technique is also frequently implemented. In this context, a power series is essentially a stream of coefficients,...

Sur la racine carrée de la codifférente

Stéphane Vinatier (2003)

Journal de théorie des nombres de Bordeaux

On présente deux résultats nouveaux concernant la racine carrée de la codifférente d’une extension faiblement ramifiée de . Le premier, relatif à sa structure galoisienne, s’inscrit dans la stratégie classique développée notamment par Fröhlich et Taylor. Le second, qui concerne le réseau entier unimodulaire associé, est prouvé à l’aide de calculs numériques portant sur des exemples intéressants.

The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer, S. Louboutin, R. Okazaki (1999)

Journal de théorie des nombres de Bordeaux

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

Currently displaying 81 – 100 of 116