Page 1 Next

Displaying 1 – 20 of 50

Showing per page

Calcul du nombre de classes d'un corps quadratique imaginaire ou réel, d'après Shanks, Williams, McCurley, A. K. Lenstra et Schnorr

Henri Cohen (1989)

Journal de théorie des nombres de Bordeaux

Dans cette note nous décrivons différentes méthodes utilisées en pratique pour calculer le nombre de classes d'un corps quadratique imaginaire ou réel ainsi que pour calculer le régulateur d'un corps quadratique réel. En particulier nous décrivons l'infrastructure de Shanks ainsi que la méthode sous-exponentielle de McCurley.

Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorithmiques

François Morain (1995)

Journal de théorie des nombres de Bordeaux

Nous décrivons dans cet article les algorithmes nécessaires à une implantation efficace de la méthode de Schoof pour le calcul du nombre de points sur une courbe elliptique dans un corps fini. Nous tentons d’unifier pour cela les idées d’Atkin et d’Elkies. En particulier, nous décrivons le calcul d’équations pour X 0 ( ) , premier, ainsi que le calcul efficace de facteurs des polynômes de division d’une courbe elliptique.

Calcul et rationalité de fonctions de Belyi en genre 0

Jean-Marc Couveignes (1994)

Annales de l'institut Fourier

L’article comporte une méthode de calcul de fonctions de Belyi “optimales”, associées à des dessins plans. Cette étude conduit à s’interroger sur la possibilité de définir une fonction de Belyi sur le corps des modules du dessin. Pour les arbres par exemple, nous montrons que c’est toujours le cas. La preuve donne une méthode pour spécifier une telle fonction. Nous donnons ensuite un exemple de dessin qui n’admet pas de fonction de Belyi sur son corps des modules. Enfin, nous étudions la question...

Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields

István Gaál, Gábor Petrányi (2014)

Czechoslovak Mathematical Journal

It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields K generated by a root ξ of the polynomial P t ( x ) = x 4 - t x 3 - 6 x 2 + t x + 1 , assuming that t > 0 , t 3 and t 2 + 16 has no odd square factors. In addition to generators of power integral bases we also calculate the minimal...

Calculation of the greatest common divisor of perturbed polynomials

Zítko, Jan, Eliaš, Ján (2013)

Programs and Algorithms of Numerical Mathematics

The coefficients of the greatest common divisor of two polynomials f and g (GCD ( f , g ) ) can be obtained from the Sylvester subresultant matrix S j ( f , g ) transformed to lower triangular form, where 1 j d and d = deg(GCD ( f , g ) ) needs to be computed. Firstly, it is supposed that the coefficients of polynomials are given exactly. Transformations of S j ( f , g ) for an arbitrary allowable j are in details described and an algorithm for the calculation of the GCD ( f , g ) is formulated. If inexact polynomials are given, then an approximate greatest...

Catalan’s conjecture

Yuri F. Bilu (2002/2003)

Séminaire Bourbaki

The subject of the talk is the recent work of Mihăilescu, who proved that the equation x p - y q = 1 has no solutions in non-zero integers x , y and odd primes p , q . Together with the results of Lebesgue (1850) and Ko Chao (1865) this implies the celebratedconjecture of Catalan (1843): the only solution to x u - y v = 1 in integers x , y > 0 and u , v > 1 is 3 2 - 2 3 = 1 . Before the work of Mihăilescu the most definitive result on Catalan’s problem was due to Tijdeman (1976), who proved that the solutions of Catalan’s equation are bounded by an absolute...

Census algorithms for chinese remainder pseudorank

David Laing, Bruce Litow (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We investigate the density and distribution behaviors of the chinese remainder representation pseudorank. We give a very strong approximation to density, and derive two efficient algorithms to carry out an exact count (census) of the bad pseudorank integers. One of these algorithms has been implemented, giving results in excellent agreement with our density analysis out to 5189 -bit integers.

Census algorithms for chinese remainder pseudorank

David Laing, Bruce Litow (2007)

RAIRO - Theoretical Informatics and Applications

We investigate the density and distribution behaviors of the chinese remainder representation pseudorank. We give a very strong approximation to density, and derive two efficient algorithms to carry out an exact count (census) of the bad pseudorank integers. One of these algorithms has been implemented, giving results in excellent agreement with our density analysis out to 5189-bit integers.

Class numbers of totally real fields and applications to the Weber class number problem

John C. Miller (2014)

Acta Arithmetica

The determination of the class number of totally real fields of large discriminant is known to be a difficult problem. The Minkowski bound is too large to be useful, and the root discriminant of the field can be too large to be treated by Odlyzko's discriminant bounds. We describe a new technique for determining the class number of such fields, allowing us to attack the class number problem for a large class of number fields not treatable by previously known methods. We give an application to Weber's...

Closed-form expression for Hankel determinants of the Narayana polynomials

Marko D. Petković, Paul Barry, Predrag Rajković (2012)

Czechoslovak Mathematical Journal

We considered a Hankel transform evaluation of Narayana and shifted Narayana polynomials. Those polynomials arises from Narayana numbers and have many combinatorial properties. A mainly used tool for the evaluation is the method based on orthogonal polynomials. Furthermore, we provided a Hankel transform evaluation of the linear combination of two consecutive shifted Narayana polynomials, using the same method (based on orthogonal polynomials) and previously obtained moment representation of Narayana...

CM liftings of supersingular elliptic curves

Ben Kane (2009)

Journal de Théorie des Nombres de Bordeaux

Assuming GRH, we present an algorithm which inputs a prime p and outputs the set of fundamental discriminants D < 0 such that the reduction map modulo a prime above p from elliptic curves with CM by 𝒪 D to supersingular elliptic curves in characteristic p is surjective. In the algorithm we first determine an explicit constant D p so that | D | > D p implies that the map is necessarily surjective and then we compute explicitly the cases | D | < D p .

Currently displaying 1 – 20 of 50

Page 1 Next