Displaying 21 – 40 of 50

Showing per page

Complete solutions of a Lebesgue-Ramanujan-Nagell type equation

Priyanka Baruah, Anup Das, Azizul Hoque (2024)

Archivum Mathematicum

We consider the Lebesgue-Ramanujan-Nagell type equation x 2 + 5 a 13 b 17 c = 2 m y n , where a , b , c , m 0 , n 3 and x , y 1 are unknown integers with gcd ( x , y ) = 1 . We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all S -integral points on a class of elliptic curves.

Comptage exact de discriminants d'extensions abéliennes

Henri Cohen (2000)

Journal de théorie des nombres de Bordeaux

Le but de cet article est d’expliquer comment calculer exactement le nombre de classes d’isomorphismes d’extensions abéliennes de en degré inférieur ou égal à 4 et de discriminant majoré par une borne donnée. On parvient par exemple à calculer le nombre de corps cubiques cycliques de discriminant inférieur ou égal à 10 37 .

Computation of 2-groups of positive classes of exceptional number fields

Jean-François Jaulent, Sebastian Pauli, Michael E. Pohst, Florence Soriano–Gafiuk (2008)

Journal de Théorie des Nombres de Bordeaux

We present an algorithm for computing the 2-group 𝒞 F p o s of the positive divisor classes in case the number field F has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel W K 2 ( F ) in K 2 ( F ) .

Computations of Galois representations associated to modular forms of level one

Peng Tian (2014)

Acta Arithmetica

We propose an improved algorithm for computing mod ℓ Galois representations associated to a cusp form f of level one. The proposed method allows us to explicitly compute the case with ℓ = 29 and f of weight k = 16, and the cases with ℓ = 31 and f of weight k = 12,20,22. All the results are rigorously proved to be correct. As an example, we will compute the values modulo 31 of Ramanujan's tau function at some huge primes up to a sign. Also we will give an improved uper bound on...

Computations with Witt vectors of length 3

Luís R. A. Finotti (2011)

Journal de Théorie des Nombres de Bordeaux

In this paper we describe how to perform computations with Witt vectors of length 3 in an efficient way and give a formula that allows us to compute the third coordinate of the Greenberg transform of a polynomial directly. We apply these results to obtain information on the third coordinate of the j -invariant of the canonical lifting as a function on the j -invariant of the ordinary elliptic curve in characteristic p .

Computing all monogeneous mixed dihedral quartic extensions of a quadratic field

István Gaál, Gábor Nyul (2001)

Journal de théorie des nombres de Bordeaux

Let M be a given real quadratic field. We give a fast algorithm for determining all dihedral quartic fields K with mixed signature having power integral bases and containing M as a subfield. We also determine all generators of power integral bases in K . Our algorithm combines a recent result of Kable [9] with the algorithm of Gaál, Pethö and Pohst [6], [7]. To illustrate the method we performed computations for M = ( 2 ) , ( 3 ) , ( 5 ) .

Computing fundamental domains for Fuchsian groups

John Voight (2009)

Journal de Théorie des Nombres de Bordeaux

We exhibit an algorithm to compute a Dirichlet domain for a Fuchsian group Γ with cofinite area. As a consequence, we compute the invariants of Γ , including an explicit finite presentation for Γ .

Currently displaying 21 – 40 of 50