Page 1 Next

Displaying 1 – 20 of 2021

Showing per page

𝒯 -semiring pairs

Jaiung Jun, Kalina Mincheva, Louis Rowen (2022)

Kybernetika

We develop a general axiomatic theory of algebraic pairs, which simultaneously generalizes several algebraic structures, in order to bypass negation as much as feasible. We investigate several classical theorems and notions in this setting including fractions, integral extensions, and Hilbert's Nullstellensatz. Finally, we study a notion of growth in this context.

A Characterization of One-Element p-Bases of Rings of Constants

Piotr Jędrzejewicz (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Let K be a unique factorization domain of characteristic p > 0, and let f ∈ K[x₁,...,xₙ] be a polynomial not lying in K [ x p , . . . , x p ] . We prove that K [ x p , . . . , x p , f ] is the ring of constants of a K-derivation of K[x₁,...,xₙ] if and only if all the partial derivatives of f are relatively prime. The proof is based on a generalization of Freudenburg’s lemma to the case of polynomials over a unique factorization domain of arbitrary characteristic.

Currently displaying 1 – 20 of 2021

Page 1 Next