Degree three cohomological invariants of semisimple groups
We study the degree 3 cohomological invariants with coefficients in of a semisimple group over an arbitrary field. A list of all invariants of adjoint groups of inner type is given.
We study the degree 3 cohomological invariants with coefficients in of a semisimple group over an arbitrary field. A list of all invariants of adjoint groups of inner type is given.
Nous nous intéressons aux composantes irréductibles des espaces de modules de G-revêtements et à leurs corps de définition. Nos résultats permettent de construire, quel que soit le groupe fini, de telles composantes définies sur . Notre méthode laisse de plus une grande latitude quant au type de ramification des revêtements. Ces composantes sont obtenues par déformation de certains revêtements du bord des espaces de modules. Enfin, ces composantes sont aussi compatibles dans une tour d’espaces...
Soit un nombre premier impair. Soit une -extension galoisienne de corps ne contenant pas les racines -ièmes de l’unité : . Notons le groupe de Galois de et son sous-groupe de Frattini. Via une notion de descente galoisienne et les parallélogrammes galoisiens qu’elle induit, nous construisons ici toutes les extensions telles que soit d’ordre .