Conservation of the noetherianity by perfect transcendental field extensions.
This is a sequel to [1]. Here we give careful attention to the difficulties of calculating Morley and U-rank of the infinite rank ω-stable theories constructed by variants of Hrushovski's methods. Sample result: For every k < ω, there is an ω-stable expansion of any algebraically closed field which has Morley rank ω × k. We include a corrected proof of the lemma in [1] establishing that the generic model is ω-saturated in the rank 2 case.
On donne une caractérisation simple pour l’existence des bases normales pour les extensions modérément ramifiées à groupe de Galois quaternionien d’ordre . La preuve conduit à un algorithme que l’on illustre par un exemple.
Our purpose is to determine the complete set of mutually orthogonal squares of order d, which are not necessary Latin. In this article, we introduce the concept of supersquare of order d, which is defined with the help of its generating subgroup in . We present a method of construction of the mutually orthogonal supersquares. Further, we investigate the orthogonality of extraordinary supersquares, a special family of squares, whose generating subgroups are extraordinary. The extraordinary subgroups...
We give a short account of the construction and properties of left neofields. Most useful in practice seem to be neofields based on the cyclic group and particularly those having an additional divisibility property, called D-neofields. We shall give examples of applications to the construction of orthogonal latin squares, to the design of tournaments balanced for residual effects and to cryptography.
On sait que les seuls sous-groupes résolubles transitifs du groupe symétrique ₅ sont isomorphes au groupe de Frobenius , au groupe diédral D₅ et au groupe cyclique C₅. Nous montrerons comment construire des extensions de degré 5 à groupe de Galois résoluble à l’aide de courbes elliptiques. Dans un premier paragraphe nous utiliserons une courbe elliptique ayant un point de 5-torsion rationnel pour les groupes D₅ et C₅. Puis, dans le paragraphe suivant, nous utiliserons une courbe elliptique ayant...
La classe des constructibles de la géométrie algébrique est close par projection. La théorie des modèles exprime ce fait en disant que les corps algébriquement clos éliminent les quantificateurs dans le langage des anneaux. De façon analogue, les corps algébriquement clos non trivialement valués éliminent les quantificateurs dans le langage des anneaux enrichi de la relation dite de divisibilité . Cela implique en particulier la « -minimalité » : une partie définissable d’un corps algébriquement...