Displaying 1001 – 1020 of 2022

Showing per page

On canonical subfield preserving polynomials

Giacomo Micheli, Davide Schipani (2014)

Acta Arithmetica

Explicit monoid structure is provided for the class of canonical subfield preserving polynomials over finite fields. Some classical results and asymptotic estimates will follow as corollaries.

On convergence of integrals in o-minimal structures on archimedean real closed fields

Tobias Kaiser (2005)

Annales Polonici Mathematici

We define a notion of volume for sets definable in an o-minimal structure on an archimedean real closed field. We show that given a parametric family of continuous functions on the positive cone of an archimedean real closed field definable in an o-minimal structure, the set of parameters where the integral of the function converges is definable in the same structure.

On degrees of three algebraic numbers with zero sum or unit product

Paulius Drungilas, Artūras Dubickas (2016)

Colloquium Mathematicae

Let α, β and γ be algebraic numbers of respective degrees a, b and c over ℚ such that α + β + γ = 0. We prove that there exist algebraic numbers α₁, β₁ and γ₁ of the same respective degrees a, b and c over ℚ such that α₁ β₁ γ₁ = 1. This proves a previously formulated conjecture. We also investigate the problem of describing the set of triplets (a,b,c) ∈ ℕ³ for which there exist finite field extensions K/k and L/k (of a fixed field k) of degrees a and b, respectively, such that the degree of the...

On double covers of the generalized alternating group d m as Galois groups over algebraic number fields

Martin Epkenhans (1997)

Acta Arithmetica

Let d m b e t h e g e n e r a l i z e d a l t e r n a t i n g g r o u p . W e p r o v e t h a t a l l d o u b l e c o v e r s o f ℤd ≀ m o c c u r a s G a l o i s g r o u p s o v e r a n y a l g e b r a i c n u m b e r f i e l d . W e f u r t h e r r e a l i z e s o m e o f t h e s e d o u b l e c o v e r s a s t h e G a l o i s g r o u p s o f r e g u l a r e x t e n s i o n s o f ( T ) . I f d i s o d d a n d m > 7 , t h e n e v e r y c e n t r a l e x t e n s i o n o f ℤd ≀ m o c c u r s a s t h e G a l o i s g r o u p o f a r e g u l a r e x t e n s i o n o f ( T ) . W e f u r t h e r i m p r o v e s o m e o f o u r e a r l i e r r e s u l t s c o n c e r n i n g d o u b l e c o v e r s o f t h e g e n e r a l i z e d s y m m e t r i c g r o u p ℤd ≀ m .

On elementary equivalence, isomorphism and isogeny

Pete L. Clark (2006)

Journal de Théorie des Nombres de Bordeaux

Motivated by recent work of Florian Pop, we study the connections between three notions of equivalence of function fields: isomorphism, elementary equivalence, and the condition that each of a pair of fields can be embedded in the other, which we call isogeny. Some of our results are purely geometric: we give an isogeny classification of Severi-Brauer varieties and quadric surfaces. These results are applied to deduce new instances of “elementary equivalence implies isomorphism”: for all genus zero...

Currently displaying 1001 – 1020 of 2022