Displaying 141 – 160 of 275

Showing per page

Modules différentiels sur les couronnes

Gilles Christol, Bernard Dwork (1994)

Annales de l'institut Fourier

Dans cet article, nous étudions les modules libres de type fini sur l’anneau [ d / d x ] est l’anneau des éléments analytiques dans une couronne r 1 < | x | < r 2 de p . D’une part, nous définissons, pour chaque nombre r de [ r 1 , r 2 ] , un rayon de convergence “générique" et nous montrons que celui-ci dépend continûment de r . D’autre part, nous étudions l’existence et l’unicité d’un “antécédent de Frobenius".

Morales-Ramis Theorems via Malgrange pseudogroup

Guy Casale (2009)

Annales de l’institut Fourier

In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.

On a general difference Galois theory I

Shuji Morikawa (2009)

Annales de l’institut Fourier

We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0 , we attach its Galois group, which is a group of coordinate transformation.

On a general difference Galois theory II

Shuji Morikawa, Hiroshi Umemura (2009)

Annales de l’institut Fourier

We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.

Currently displaying 141 – 160 of 275