Page 1

Displaying 1 – 14 of 14

Showing per page

Rational Constants of Generic LV Derivations and of Monomial Derivations

Janusz Zieliński (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

We describe the fields of rational constants of generic four-variable Lotka-Volterra derivations. Thus, we determine all rational first integrals of the corresponding systems of differential equations. Such systems play a role in population biology, laser physics and plasma physics. They are also an important part of derivation theory, since they are factorizable derivations. Moreover, we determine the fields of rational constants of a class of monomial derivations.

Reduction of differential equations

Krystyna Skórnik, Joseph Wloka (2000)

Banach Center Publications

Let (F,D) be a differential field with the subfield of constants C (c ∈ C iff Dc=0). We consider linear differential equations (1) L y = D n y + a n - 1 D n - 1 y + . . . + a 0 y = 0 , where a 0 , . . . , a n F , and the solution y is in F or in some extension E of F (E ⊇ F). There always exists a (minimal, unique) extension E of F, where Ly=0 has a full system y 1 , . . . , y n of linearly independent (over C) solutions; it is called the Picard-Vessiot extension of F E = PV(F,Ly=0). The Galois group G(E|F) of an extension field E ⊇ F consists of all differential automorphisms of...

Relations de Fuchs pour les systèmes différentiels réguliers

Eduardo Corel (2001)

Bulletin de la Société Mathématique de France

Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur 1 ( ).

Remarks on the intrinsic inverse problem

Daniel Bertrand (2002)

Banach Center Publications

The intrinsic differential Galois group is a twisted form of the standard differential Galois group, defined over the base differential field. We exhibit several constraints for the inverse problem of differential Galois theory to have a solution in this intrinsic setting, and show by explicit computations that they are sufficient in a (very) special situation.

Représentations de de Rham et normes universelles

Laurent Berger (2005)

Bulletin de la Société Mathématique de France

On calcule le module des normes universelles pour une représentation p -adique de de Rham. Le calcul utilise la théorie des ( ϕ , Γ ) -modules (la formule de réciprocité de Cherbonnier-Colmez) et l’équation différentielle associée à une représentation de de Rham.

Représentations galoisiennes et opérateurs de Bessel p -adiques

Yves André (2002)

Annales de l’institut Fourier

Nous traitons des liens entre équations différentielles p -adiques et représentations p -adiques de corps locaux de caractéristique p , en nous concentrant sur le cas Bessel. Nous démontrons que toute équation de Bessel p -adique normalisée à la Dwork, sur une fine couronne au bord du disque à l’infini, se trivialise sur un certain revêtement étale de cette couronne (revêtement provenant d’une extension finie séparable de 𝔽 p ( ( 1 / x ) ) ). Le cas difficile est p = 2 , et nous explicitons complètement le revêtement et...

Rings of constants of four-variable Lotka-Volterra systems

Janusz Zieliński (2013)

Open Mathematics

Lotka-Volterra systems appear in population biology, plasma physics, laser physics and derivation theory, among many others. We determine the rings of constants of four-variable Lotka-Volterra derivations with four parameters C 1, C 2, C 3, C 4 ∈ k, where k is a field of characteristic zero. Thus, we give a full description of polynomial first integrals of the respective systems of differential equations.

Rings of constants of generic 4D Lotka-Volterra systems

Janusz Zieliński, Piotr Ossowski (2013)

Czechoslovak Mathematical Journal

We show that the rings of constants of generic four-variable Lotka-Volterra derivations are finitely generated polynomial rings. We explicitly determine these rings, and we give a description of all polynomial first integrals of their corresponding systems of differential equations. Besides, we characterize cofactors of Darboux polynomials of arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coefficients in the set of nonnegative integers. Lotka-Volterra systems...

Currently displaying 1 – 14 of 14

Page 1