On -flat modules and -von Neumann regular rings.
We investigate some properties of -submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an -submodule. Also, we show that if is a finitely generated -module and is a prime ideal of , then has -submodule. Moreover, we define the notion of -submodule, which is a generalization of the notion of -submodule. We find some characterizations of -submodules and we examine the way the aforementioned notions are related to each...
We find complete sets of generating relations between the elements [r] = rⁿ - r for and for n = 3. One of these relations is the n-derivation property [rs] = rⁿ[s] + s[r], r,s ∈ R.
In this note we consider a perturbed mathematical programming problem where both the objective and the constraint functions are polynomial in all underlying decision variables and in the perturbation parameter ε. Recently, the theory of Gröbner bases was used to show that solutions of the system of first order optimality conditions can be represented as Puiseux series in ε in a neighbourhood of ε = 0. In this paper we show that the determination of the branching order and the order of the pole (if...
First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime -modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings.
We characterize prime submodules of for a principal ideal domain and investigate the primary decomposition of any submodule into primary submodules of