Loading [MathJax]/extensions/MathZoom.js
The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras , and generalized conformal -Verma modules of scalar type. As a result, we classify the -singular vectors for this class of -modules.
In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as -modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid.
Let be the algebra of all strictly upper triangular matrices over a unital commutative ring . A map on is called preserving commutativity in both directions if . In this paper, we prove that each invertible linear map on preserving commutativity in both directions is exactly a quasi-automorphism of , and a quasi-automorphism of can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.
We consider the Hilbert scheme of space curves with homogeneous ideal and Rao module . By taking suitable generizations (deformations to a more general curve) of , we simplify the minimal free resolution of by e.g making consecutive free summands (ghost-terms) disappear in a free resolution of . Using this for Buchsbaum curves of diameter one ( for only one ), we establish a one-to-one correspondence between the set of irreducible components of that contain and a set of minimal...
This paper studies space curves of degree and arithmetic genus , with homogeneous ideal and Rao module , whose main results deal with curves which satisfy (e.g. of diameter, ). For such curves we find necessary and sufficient conditions for unobstructedness, and we compute the dimension of the Hilbert scheme, , at under the sufficient conditions. In the diameter one case, the necessary and sufficient conditions coincide, and the unobstructedness of turns out to be equivalent to the...
Let denote a finite index subgroup of the modular group and let denote a finite-dimensional complex representation of Let denote the collection of holomorphic vector-valued modular forms for and let denote the collection of modular forms on . Then is a -graded -module. It has been proven that may not be projective as a -module. We prove that is Cohen-Macaulay as a -module. We also explain how to apply this result to prove that if is a polynomial ring, then is a free...
Let be a finite simple graph with the vertex set and let be its edge ideal in the polynomial ring . We compute the depth and the Castelnuovo-Mumford regularity of when or is a graph obtained from Cohen-Macaulay bipartite graphs , by the operation or operation, respectively.
Let be an ideal in a commutative Noetherian ring . Then the ideal has the strong persistence property if and only if for all , and has the symbolic strong persistence property if and only if for all , where denotes the th symbolic power of . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial ideal has the...
We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition...
Currently displaying 21 –
40 of
53