On radical-equivalent and zero-equivalent ideals
We give a deepened version of a lemma of Gabrielov and then use it to prove the following fact: if h ∈ 𝕂[[X]] (𝕂 = ℝ or ℂ) is a root of a non-zero polynomial with convergent power series coefficients, then h is convergent.
We consider two issues concerning polynomial cycles. Namely, for a discrete valuation domain of positive characteristic (for ) or for any Dedekind domain of positive characteristic (but only for ), we give a closed formula for a set of all possible cycle-lengths for polynomial mappings in . Then we give a new property of sets , which refutes a kind of conjecture posed by W. Narkiewicz.
Let R be a real closed field, and denote by the ring of germs, at the origin of Rⁿ, of functions in a neighborhood of 0 ∈ Rⁿ. For each n ∈ ℕ, we construct a quasianalytic subring with some natural properties. We prove that, for each n ∈ ℕ, is a noetherian ring and if R = ℝ (the field of real numbers), then , where ₙ is the ring of germs, at the origin of ℝⁿ, of real analytic functions. Finally, we prove the Real Nullstellensatz and solve Hilbert’s 17th Problem for the ring .
Let be a commutative ring with an identity different from zero and be a positive integer. Anderson and Badawi, in their paper on -absorbing ideals, define a proper ideal of a commutative ring to be an -absorbing ideal of , if whenever for , then there are of the ’s whose product is in and conjecture that for any ideal of an arbitrary ring , where . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions...
We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.
Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of , then the set is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...