On Stanley-Reisner rings of reduction number one
Let be a commutative ring with an identity different from zero and be a positive integer. Anderson and Badawi, in their paper on -absorbing ideals, define a proper ideal of a commutative ring to be an -absorbing ideal of , if whenever for , then there are of the ’s whose product is in and conjecture that for any ideal of an arbitrary ring , where . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions...
We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.
Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of , then the set is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...
If and are positive integers with and , then the setis a multiplicative monoid known as an arithmetical congruence monoid (or ACM). For any monoid with units and any we say that is a factorization length of if and only if there exist irreducible elements of and . Let be the set of all such lengths (where whenever ). The Delta-set of the element is defined as the set of gaps in : and the Delta-set of the monoid is given by . We consider the when is an ACM with...