De Rham cohomology of affinoid spaces
We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic (as defined by Abramovich, Olsson, and Vistoli) which lift mod degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
We establish a decomposability criterion for linear sheaves on ℙn. Applying it to instanton bundles, we show, in particular, that every rank 2n instanton bundle of charge 1 on ℙn is decomposable. Moreover, we provide an example of an indecomposable instanton bundle of rank 2n − 1 and charge 1, thus showing that our criterion is sharp.
Soit un anneau de Dedekind, de corps des fractions , et soit une extension galoisienne de , dont le groupe de Galois est cyclique d’ordre premier. On note la clôture intégrale de dans . Il existe une unique décomposition du -module en somme directe de sous-modules indécomposables. On détermine cette décomposition lorsque est un corps local ou un corps de nombres. Le résultat dépend d’une part des caractères irréductibles de sur , d’autre part des nombres de ramification associés...
The main purpose of this paper is to present a natural method of decomposition into special cubes and to demonstrate how it makes it possible to efficiently achieve many well-known fundamental results from quasianalytic geometry as, for instance, Gabrielov's complement theorem, o-minimality or quasianalytic cell decomposition.
The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial nilpotent orbit in a simple Lie algebra.This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive...
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
Applications of singularity theory give rise to many questions concerning deformations of singularities. Unfortunately, satisfactory answers are known only for simple singularities and partially for unimodal ones. The aim of this paper is to give some insight into decompositions of multi-modal singularities with unimodal leading part. We investigate the singularities which have modality k - 1 but the quasihomogeneous part of their normal form only depends on one modulus.