Displaying 441 – 460 of 917

Showing per page

The Mumford conjecture

Geoffrey Powell (2004/2005)

Séminaire Bourbaki

The Mumford Conjecture asserts that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra on the Mumford-Morita-Miller characteristic classes; this can be reformulated in terms of the classifying space B Γ derived from the mapping class groups. The conjecture admits a topological generalization, inspired by Tillmann’s theorem that B Γ admits an infinite loop space structure after applying Quillen’s plus construction. The text presents the proof by Madsen and...

The Mumford-Tate group of 1-motives

Cristiana Bertolin (2002)

Annales de l’institut Fourier

In this paper we study the structure and the degeneracies of the Mumford-Tate group M T ( M ) of a 1-motive M defined over . This group is an algebraic - group acting on the Hodge realization of M and endowed with an increasing filtration W . We prove that the unipotent radical of M T ( M ) , which is W - 1 ( M T ( M ) ) , injects into a “generalized” Heisenberg group. We then explain how to reduce to the study of the Mumford-Tate group of a direct sum of 1-motives whose torus’character group and whose lattice are both of rank 1....

The Nash problem of arcs and the rational double points D n

Camille Plénat (2008)

Annales de l’institut Fourier

This paper deals with the Nash problem, which consists in comparing the number of families of arcs on a singular germ of surface U with the number of essential components of the exceptional divisor in the minimal resolution of this singularity. We prove their equality in the case of the rational double points D n ( n 4 ).

The number of conics tangent to five given conics: the real case.

Felice Ronga, Alberto Tognoli, Thierry Vust (1997)

Revista Matemática de la Universidad Complutense de Madrid

It is a classical result, first established by de Jonquières (1859), that generically the number of conics tangent to 5 given conics in the complex projective plane is 3264. We show here the existence of configurations of 5 real conics such that the number of real conics tangent to them is 3264.

Currently displaying 441 – 460 of 917