Corrections à: «Transformations de Fourier et majoration de sommes exponentielles»
Soient une variété de Shimura, fermée et irréductible et un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, est une sous-variété de type Hodge. Par exemple, si est un espace de modules de variétés abéliennes, est un ensemble de points correspondant à des variétés de type CM et doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev montrent certains...
We study certain kinds of geometric correspondences between (possibly singular) algebraic varieties and we obtain comparison results regarding natural filtrations on the homology of varieties.
En este trabajo se estudian las correspondencias divisoriales entre dos esquemas relativos. Una correspondencia divisorial es una correspondencia algebraica entre los puntos de un esquema X y las clases de equivalencia lineal de divisores de otro esquema Y. Se consideran correspondencias triviales las que asignan a cada punto toda la variedad y las inversas de éstas. Por tanto las correspondencias divisoriales módulo las triviales son los divisores del producto módulo, módulo los divisores que provienen...
There are two mistakes in the referred paper. One is ridiculous and one is significant. But none is serious.
This paper deals with surfaces with many lines. It is well-known that a cubic contains of them and that the maximal number for a quartic is . In higher degree the question remains open. Here we study classical and new constructions of surfaces with high number of lines. We obtain a symmetric octic with lines, and give examples of surfaces of degree containing a sequence of skew lines.
We describe three algorithms to count the number of points on an elliptic curve over a finite field. The first one is very practical when the finite field is not too large ; it is based on Shanks's baby-step-giant-step strategy. The second algorithm is very efficient when the endomorphism ring of the curve is known. It exploits the natural lattice structure of this ring. The third algorithm is based on calculations with the torsion points of the elliptic curve [18]. This deterministic polynomial...