On a Geometric Interpretation of Multiplicity.
Page 1 Next
C.P. Ramanujam (1973)
Inventiones mathematicae
Carlos S. Subi (1977)
Annales scientifiques de l'École Normale Supérieure
Henry Pinkham (1975)
Manuscripta mathematica
Tadayuki Matsuoka (1977)
Manuscripta mathematica
Kurt Behnke (1990)
Manuscripta mathematica
Geng Xu (1996)
Manuscripta mathematica
Piotr Jaworski (1998)
Banach Center Publications
It is well-known that the versal deformations of nonsimple singularities depend on moduli. The first step in deeper understanding of this phenomenon is to determine the versal discriminant, which roughly speaking is an obstacle for analytic triviality of an unfolding or deformation along the moduli. The goal of this paper is to describe the versal discriminant of and singularities basing on the fact that the deformations of these singularities may be obtained as blowing ups of certain deformations...
T. Krasiński (1991)
Annales Polonici Mathematici
Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.
Augusto Nobile (1981)
Mathematische Zeitschrift
D. Nesselmann (1986)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Vladimir Baranovsky, Jeremy Pecharich (2010)
Open Mathematics
Let X and Y be two smooth Deligne-Mumford stacks and consider a pair of functions f: X → , g:Y → . Assuming that there exists a complex of sheaves on X × Y which induces an equivalence of D b(X) and D b(Y), we show that there is also an equivalence of the singular derived categories of the fibers f −1(0) and g −1(0). We apply this statement in the setting of McKay correspondence, and generalize a theorem of Orlov on the derived category of a Calabi-Yau hypersurface in a weighted projective...
Adam Dzedzej, Zbigniew Szafraniec (2005)
Annales Polonici Mathematici
For an analytic function f:ℝⁿ,0 → ℝ,0 having a critical point at the origin, we describe the topological properties of the partition of the family of trajectories of the gradient equation ẋ = ∇f(x) attracted by the origin, given by characteristic exponents and asymptotic critical values.
Ruud Pellikaan (1989)
Compositio Mathematica
Shihoko Ishii (1985)
Mathematische Annalen
Hao Chen (1995)
Mathematische Annalen
Kimio Watanabe (1980)
Mathematische Annalen
Osamu Saeki (1987)
Commentarii mathematici Helvetici
Masataka Tomari, Fumio Hidaka (1989)
Manuscripta mathematica
Andrew J. Sommese, Marco Andreatta (1989)
Forum mathematicum
M. Andreatta, E. Ballico (1991)
Journal für die reine und angewandte Mathematik
Page 1 Next