Berührungsbedingungen für p-l-s-Kegelschnitte
We construct new birational maps between quadrics over a field. The maps apply to several types of quadratic forms, including Pfister neighbors, neighbors of multiples of a Pfister form, and half-neighbors. One application is to determine which quadrics over a field are ruled (that is, birational to the projective line times some variety) in a larger range of dimensions. We describe ruledness completely for quadratic forms of odd dimension at most 17, even dimension at most 10, or dimension 14....
W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there...
Let X ⊂ P6 be a smooth irreducible projective threefold, and d its degree. In this paper we prove that there exists a constant β such that for all X containing a smooth ruled surface as hyperplane section and not contained in a fourfold of degree less than or equal to 15, d ≤ β. Under some more restrictive hypothesis we prove an analogous result for threefolds containing a smooth ruled surface as hyperplane section and contained in a fourfold of degree less than or equal to 15.
We take up the study of the Brill-Noether loci , where is a smooth projective variety of dimension , , and is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for , where is a divisor that moves linearly on a smooth projective variety of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension . In the -dimensional case we prove an...