Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Introduction à l’étude globale des tissus sur une surface holomorphe

Vincent Cavalier, Daniel Lehmann (2007)

Annales de l’institut Fourier

Beaucoup de concepts sur les tissus n’ont été étudiés que localement. Il apparaît que certains d’entre eux se laissent globaliser, mais pas toujours de façon immédiate. Le premier objectif de cet article est de préciser à chaque fois ce qu’il en est, et de mettre en place les outils utiles à une étude globale des tissus sur une surface holomorphe M arbitraire, et en particulier sur le plan projectif complexe 2 . Certains concepts nouveaux vont alors apparaître, tels le type (ou le degré si M = 2 ), la...

Invariance of tautological equations I: conjectures and applications

Y.-P. Lee (2008)

Journal of the European Mathematical Society

The main goal of this paper is to introduce a set of conjectures on the relations in the tautological rings. In particular, this framework gives an efficient algorithm to calculate all tautological equations using only finite-dimensional linear algebra. Other applications include the proofs of Witten’s conjecture on the relations between higher spin curves and Gelfand–Dickey hierarchy and Virasoro conjecture for target manifolds with conformal semisimple quantum cohomology, both for genus up to...

Invariante Divisoren und Schnitthomologie von torischen Varietäten

Gottfried Barthel, Jean-Paul Brasselet, Karl-Heinz Fieseler, Ludger Kaup (1996)

Banach Center Publications

In this article, we complete the interpretation of groups of classes of invariant divisors on a complex toric variety X of dimension n in terms of suitable (co-) homology groups. In [BBFK], we proved the following result (see Satz 1 below): Let C l D i v C ( X ) and C l D i v W ( X ) denote the groups of classes of invariant Cartier resp. Weil divisors on X. If X is non degenerate (i.e., not equivariantly isomorphic to the product of a toric variety and a torus of positive dimension), then the natural homomorphisms C l D i v C ( X ) H 2 ( X ) and C l D i v W ( X ) H 2 n - 2 c l d ( X ) are...

Currently displaying 21 – 33 of 33

Previous Page 2