Skew-Symmetric Vanishing Lattices and Their Monodromy Groups. II.
We consider a version of the A N Bethe equation of XXX type and introduce a reporduction procedure constructing new solutions of this equation from a given one. The set of all solutions obtained from a given one is called a population. We show that a population is isomorphic to the sl N+1 flag variety and that the populations are in one-to-one correspondence with intersection points of suitable Schubert cycles in a Grassmanian variety. We also obtain similar results for the root systems B N and...
We recall some basic constructions from -adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of -pairs, introduced recently by Berger, which provides a natural enlargement of the category of -adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate...
For a smooth complex projective variety, the rank of the Néron-Severi group is bounded by the Hodge number . Varieties with have interesting properties, but are rather sparse, particularly in dimension . We discuss in this note a number of examples, in particular those constructed from curves with special Jacobians.