Transformation de Fourier et majoration de sommes exponentielles
Dans cet article on étudie la transformation de Fourier-Deligne sur les schémas en groupes commutatifs unipotents connexes définis sur un corps parfait. On rappelle la construction du dual de Serre d’un groupe commutatif unipotent connexe et on définit la notion de paire duale admissible de schémas en groupes commutatifs unipotents connexes sur un corps parfait. On définit alors la transformation de Fourier-Deligne pour ces paires duales et on dégage les propriétés élémentaires de ce foncteur :...
We extend Ogus’notion of -crystal and -span to the context of Berthelot’s crystals of level and we study the generalization of Ogus’theorem on the equivalence between -crystals and -spans of width less than .
The diverse Dieudonné theories have as their common goal the classification of formal groups and -divisible groups. The most recent theory is Zink’s theory of displays. A display over a ring R is a finitely generated projective module over the ring of Witt vectors, , equipped with additional structures. Zink has shown that using this notion, more concrete than those previously defined, one can obtain a good theory and prove an equivalence theorem in great generality. I will give an overview of...