Displaying 261 – 280 of 397

Showing per page

Quartic del Pezzo surfaces over function fields of curves

Brendan Hassett, Yuri Tschinkel (2014)

Open Mathematics

We classify quartic del Pezzo surface fibrations over the projective line via numerical invariants, giving explicit examples for small values of the invariants. For generic such fibrations, we describe explicitly the geometry of spaces of sections to the fibration, and mappings to the intermediate Jacobian of the total space. We exhibit examples where these are birational, which has applications to arithmetic questions, especially over finite fields.

Quelques propriétés arithmétiques des points de 3 -division de la jacobienne de y 2 = x 5 - 1

J. Boxall, E. Bavencoffe (1992)

Journal de théorie des nombres de Bordeaux

Soit C la courbe projective lisse et irréductible, définie sur Q , et dont un modèle affine est donné par y 2 = x 5 - 1 . On désigne par l’unique point de C qui n’est pas contenu dans cette partie affine. Soit J la jacobienne de C et soit φ : C 2 J le morphisme associant à chaque couple ( ξ , η ) de points de C la classe du diviseur [ ξ ] + [ η ] - 2 [ ] dans Pic 0 C . Soient u , v , f les trois fonctions rationnelles sur J définies par u φ ( ξ , η ) = x ( ξ ) + x ( η ) , v φ ( ξ , η ) = x ( ξ ) x ( η ) , f = - u + v + 1 Le but de cet article est de montrer que pour tout point P de 3 -division non nul de J , u ( P ) et v ( P ) sont des entiers algébriques...

Random Thue and Fermat equations

Rainer Dietmann, Oscar Marmon (2015)

Acta Arithmetica

We consider Thue equations of the form a x k + b y k = 1 , and assuming the truth of the abc-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations a x k + b y k + c z k = 0 of degree at least six.

Rang de courbes elliptiques avec groupe de torsion non trivial

Odile Lecacheux (2003)

Journal de théorie des nombres de Bordeaux

On construit des courbes elliptiques sur ( T ) de rang au moins 3, avec un sous-groupe de torsion non trivial. Par spécialisation, des courbes elliptiques de rang 5 et 6 sur sont obtenues.

Rational periodic points for quadratic maps

Jung Kyu Canci (2010)

Annales de l’institut Fourier

Let K be a number field. Let S be a finite set of places of K containing all the archimedean ones. Let R S be the ring of S -integers of K . In the present paper we consider endomorphisms of 1 of degree 2 , defined over K , with good reduction outside S . We prove that there exist only finitely many such endomorphisms, up to conjugation by PGL 2 ( R S ) , admitting a periodic point in 1 ( K ) of order > 3 . Also, all but finitely many classes with a periodic point in 1 ( K ) of order 3 are parametrized by an irreducible curve.

Rational points and Coxeter group actions on the cohomology of toric varieties

Gustav I. Lehrer (2008)

Annales de l’institut Fourier

We derive a simple formula for the action of a finite crystallographic Coxeter group on the cohomology of its associated complex toric variety, using the method of counting rational points over finite fields, and the Hodge structure of the cohomology. Various applications are given, including the determination of the graded multiplicity of the reflection representation.

Currently displaying 261 – 280 of 397