On the arithmetic of J0 (N) new.
In this paper, we give an explicit description of the de Rham and -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve defined over an imaginary quadratic field with complex multiplication by the full ring of integers of . Note that our condition implies that has class number one. Assume in addition that has good reduction above a prime unramified in . In this case, we prove that the specializations of the -adic elliptic...
We give upper and lower bounds for the number of points on abelian varieties over finite fields, and lower bounds specific to Jacobian varieties. We also determine exact formulas for the maximum and minimum number of points on Jacobian surfaces.