Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication.
Page 1 Next
K. Rubin (1987)
Inventiones mathematicae
Benedict H. GROOS (1980/1981)
Seminaire de Théorie des Nombres de Bordeaux
David GOSS (1980/1981)
Seminaire de Théorie des Nombres de Bordeaux
Armand Brumer, Oisín McGuinness (1992)
Inventiones mathematicae
Guido Kings (2003)
Journal de théorie des nombres de Bordeaux
This paper contains an overview of the known cases of the Bloch-Kato conjecture. It does not attempt to overview the known cases of the Beilinson conjecture and also excludes the Birch and Swinnerton-Dyer point. The paper starts with a brief review of the formulation of the general conjecture. The final part gives a brief sketch of the proofs in the known cases.
Marius van der Put (1986)
Mémoires de la Société Mathématique de France
Nicholas M. Katz (1975)
Mathematische Annalen
Masa-Nori Ishida (1992)
Mathematische Annalen
Robert C. Valentini, Daniel J. Madden (1983)
Journal für die reine und angewandte Mathematik
C. Peters, M. van der Vlugt, J. Top (1992)
Journal für die reine und angewandte Mathematik
Consani, Caterina (1999)
Documenta Mathematica
Karl Rubin (1991)
Inventiones mathematicae
D. Meuser (1986)
Inventiones mathematicae
Hulek, K., Spandaw, J., van Geemen, B., van Straten, D. (2001)
Advances in Geometry
Goro Shimura (1980)
Mémoires de la Société Mathématique de France
Alfred J. Van der Poorten (1976/1977)
Séminaire Delange-Pisot-Poitou. Théorie des nombres
А.М. Никитин (1993)
Zapiski naucnych seminarov POMI
Takeshi Saito (1995)
Inventiones mathematicae
John Coates (1984/1985)
Séminaire Bourbaki
Dino Lorenzini (2011)
Annales de l’institut Fourier
Let be a number field, and let be an abelian variety. Let denote the product of the Tamagawa numbers of , and let denote the finite torsion subgroup of . The quotient is a factor appearing in the leading term of the -function of in the conjecture of Birch and Swinnerton-Dyer. We investigate in this article possible cancellations in this ratio. Precise results are obtained for elliptic curves over or quadratic extensions , and for abelian surfaces . The smallest possible ratio...
Page 1 Next