On vector bundles whose general sections have all projectively equivalent zero-loci
We extend results on generic strange duality for surfaces by showing that the proposed isomorphism holds over an entire Noether-Lefschetz divisor in the moduli space of quasipolarized s. We interpret the statement globally as an isomorphism of sheaves over this divisor, and also describe the global construction over the space of polarized .
In [6], orbifold G-bundles on a certain class of elliptic fibrations over a smooth complex projective curve X were related to parabolic G-bundles over X. In this continuation of [6] we define and investigate holomorphic connections on an orbifold G-bundle over an elliptic fibration.
The pre-Tango structure is an ample invertible sheaf of locally exact differentials on a variety of positive characteristic. It is well known that pre-Tango structures on curves often induce pathological uniruled surfaces. We show that almost all pre-Tango structures on varieties induce higher-dimensional pathological uniruled varieties, and that each of these uniruled varieties also has a pre-Tango structure. For this purpose, we first consider the p-closed rational vector field induced...
By the results of the author and Chiantini in [3], on a general quintic threefold X⊂P 4 the minimum integer p for which there exists a positive dimensional family of irreducible rank p vector bundles on X without intermediate cohomology is at least three. In this paper we show that p≤4, by constructing series of positive dimensional families of rank 4 vector bundles on X without intermediate cohomology. The general member of such family is an indecomposable bundle from the extension class Ext 1...
In this paper all non-splitting rank-two vector bundles E without intermediate cohomology on a general quartic hypersurface X in P4 are classified. In particular, the existence of some curves on a general quartic hypersurface is proved.
We survey some parts of the vast literature on vector bundles on Hirzebruch surfaces, focusing on the rank-two case.
In this article, we survey recent work on the construction and geometry of representations of a quiver in the category of coherent sheaves on a projective algebraic manifold. We will also prove new results in the case of the quiver • ← • → •.
We give a lower bound for the Seshadri constants of ample vector bundles which depends only on the numerical properties of the Chern classes and on a “stability” condition.
On considère l’espace de modules des fibrés stables de rang sur , de classes de Chern , étant un corps algébriquement clos de caractéristique quelconque. Si () ou (), on sait ([7], [9]) que a une composante irréductible dont le point générique a la cohomologie naturelle. Nous avons calculé ([16]) la résolution minimale de . Dans cet article, nous voulons déterminer celle de si où est le plus petit entier tel que . Par un procédé standard rappelé dans [16], on se ramène à des...
We characterize minimal free resolutions of homogeneous bundles on . Besides we study stability and simplicity of homogeneous bundles on by means of their minimal free resolutions; in particular we give a criterion to see when a homogeneous bundle is simple by means of its minimal resolution in the case the first bundle of the resolution is irreducible.