Displaying 601 – 620 of 1685

Showing per page

Intrinsic pseudo-volume forms for logarithmic pairs

Thomas Dedieu (2010)

Bulletin de la Société Mathématique de France

We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic K -correspondences. We define an intrinsic logarithmic pseudo-volume form Φ X , D for every pair ( X , D ) consisting of a complex manifold X and a normal crossing Weil divisor D on X , the positive part of which is reduced. We then prove that Φ X , D is generically non-degenerate when X is projective and K X + D ...

Introduction to actions of algebraic groups

Michel Brion (2010)

Les cours du CIRM

These notes present some fundamental results and examples in the theory of algebraic group actions, with special attention to the topics of geometric invariant theory and of spherical varieties. Their goal is to provide a self-contained introduction to more advanced lectures.

Jacobian discrepancies and rational singularities

Tommaso de Fernex, Roi Docampo (2014)

Journal of the European Mathematical Society

Inspired by several works on jet schemes and motivic integration, we consider an extension to singular varieties of the classical definition of discrepancy for morphisms of smooth varieties. The resulting invariant, which we call 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 , is closely related to the jet schemes and the Nash blow-up of the variety. This notion leads to a framework in which adjunction and inversion of adjunction hold in full generality, and several consequences are drawn from these properties. The main result of the paper...

K3 fibrations on rigid double octic Calabi-Yau threefolds

Paweł Borówka (2016)

Annales Polonici Mathematici

We give a description of the Picard group of double octic Calabi-Yau threefolds using a K3 fibration defined by a singular line of the branch octic. In particular, we show that the group is generated by the Picard group of a generic fibre and the subgroup generated by the components of the reducible fibres.

Currently displaying 601 – 620 of 1685