Abelian varieties associated to certain K3 surfaces
In this article we describe our experiences with a parallel Singular implementation of the signature of a surface singularity defined by z N + g(x; y) = 0.
In this paper we show that on a general hypersurface of degree r = 3,4,5,6 in P5 a rank 2 vector bundle ε splits if and only if h1ε(n) = h2ε(n) = 0 for all n ∈ Z. Similar results for r = 1,2 were obtained in [15], [16] and [2].
Let be a del Pezzo surface of degree , and let be the simple Lie group of type . We construct a locally closed embedding of a universal torsor over into the -orbit of the highest weight vector of the adjoint representation. This embedding is equivariant with respect to the action of the Néron-Severi torus of identified with a maximal torus of extended by the group of scalars. Moreover, the -invariant hyperplane sections of the torsor defined by the roots of are the inverse images...
It is explained that the following two problems are equivalent: (i) describing all affine rulings of any given weighted projective plane; (ii) describing all weighted-homogeneous locally nilpotent derivations of k[X,Y,Z]. Then the solution of (i) is sketched. (Outline of our joint work with Peter Russell.)
In my talk I am going to remind you what is the AK-invariant and give examples of its usefulness. I shall also discuss basic conjectures about this invariant and some positive and negative results related to these conjectures.
We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.