Displaying 81 – 100 of 171

Showing per page

ACM bundles on general hypersurfaces in P5 of low degree.

Luca Chiantini, Carlo K. Madonna (2005)

Collectanea Mathematica

In this paper we show that on a general hypersurface of degree r = 3,4,5,6 in P5 a rank 2 vector bundle ε splits if and only if h1ε(n) = h2ε(n) = 0 for all n ∈ Z. Similar results for r = 1,2 were obtained in [15], [16] and [2].

Adjoint representation of E 8 and del Pezzo surfaces of degree 1

Vera V. Serganova, Alexei N. Skorobogatov (2011)

Annales de l’institut Fourier

Let X be a del Pezzo surface of degree 1 , and let G be the simple Lie group of type E 8 . We construct a locally closed embedding of a universal torsor over X into the G -orbit of the highest weight vector of the adjoint representation. This embedding is equivariant with respect to the action of the Néron-Severi torus T of X identified with a maximal torus of G extended by the group of scalars. Moreover, the T -invariant hyperplane sections of the torsor defined by the roots of G are the inverse images...

Affine rulings of weighted projective planes

Daniel Daigle (2001)

Annales Polonici Mathematici

It is explained that the following two problems are equivalent: (i) describing all affine rulings of any given weighted projective plane; (ii) describing all weighted-homogeneous locally nilpotent derivations of k[X,Y,Z]. Then the solution of (i) is sketched. (Outline of our joint work with Peter Russell.)

AK-invariant, some conjectures, examples and counterexamples

L. Makar-Limanov (2001)

Annales Polonici Mathematici

In my talk I am going to remind you what is the AK-invariant and give examples of its usefulness. I shall also discuss basic conjectures about this invariant and some positive and negative results related to these conjectures.

Algebraic complete integrability of an integrable system of Beauville

Jun-Muk Hwang, Yasunari Nagai (2008)

Annales de l’institut Fourier

We show that the Beauville’s integrable system on a ten dimensional moduli space of sheaves on a K3 surface constructed via a moduli space of stable sheaves on cubic threefolds is algebraically completely integrable, using O’Grady’s construction of a symplectic resolution of the moduli space of sheaves on a K3.

Currently displaying 81 – 100 of 171