Une propriété des surfaces rationnelles
It follows from the known restrictions on the topology of a real algebraic variety that the number of handles of the real part of a real nonsingular sextic in CP3 is at most 47. We construct a real nonsingular sextic X6 in CP3 whose real part RX6 has 44 handles. In particular, this surface verifies b1(RX6) = h1,1(X6) + 2. We extend the construction in order to obtain for any even m ≥ 6 a real nonsingular surface Xm of degree m in CP3 verifying b1(RXm) > h1,1(Xm). It is known that such a surface...
Dopo aver ricordato i principali risultati concernenti l'unirazionalità dell'ipersuperficie quartica generale di (definita su un corpo K qualsiasi) si illustra la costruzione geometrica che permette di provare l'esistenza di una superficie razionale in ogni di , con , e di trovare altri esempi di ipersuperficie quartiche lisce che sono unirazionali oltre a quello dato da B. Segre nel 1960. Si mostra poi come l'analisi delle superficie quartiche monoidali (cioè contenenti un punto triplo...
Let X be a general complete intersection of a given multi-degree in a complex projective space. Suppose that the anti-canonical line bundle of X is ample. Using the cylinder homomorphism associated with the family of complete intersections of a smaller multi-degree contained in X, we prove that the vanishing cycles in the middle homology group of X are represented by topological cycles whose support is contained in a proper Zariski closed subset T of X with certain codimension. In some cases, by...
Here we give conditions and examples for the surjectivity or injectivity of the restriction map , where is a projective variety, is a vector bundle on and is a “general” -dimensional subscheme of , union of general “fat points”.