Displaying 1581 – 1600 of 1685

Showing per page

Une sextique de l'espace projectif réel avec un grand nombre d'anses.

Frédéric Bihan (2001)

Revista Matemática Complutense

It follows from the known restrictions on the topology of a real algebraic variety that the number of handles of the real part of a real nonsingular sextic in CP3 is at most 47. We construct a real nonsingular sextic X6 in CP3 whose real part RX6 has 44 handles. In particular, this surface verifies b1(RX6) = h1,1(X6) + 2. We extend the construction in order to obtain for any even m ≥ 6 a real nonsingular surface Xm of degree m in CP3 verifying b1(RXm) > h1,1(Xm). It is known that such a surface...

Unirational quartic hypersurfaces

Marina Rosanna Marchisio (2000)

Bollettino dell'Unione Matematica Italiana

Dopo aver ricordato i principali risultati concernenti l'unirazionalità dell'ipersuperficie quartica generale X 4 di P n (definita su un corpo K qualsiasi) si illustra la costruzione geometrica che permette di provare l'esistenza di una superficie razionale in ogni X 4 di P n , con n 4 , e di trovare altri esempi di ipersuperficie quartiche lisce che sono unirazionali oltre a quello dato da B. Segre nel 1960. Si mostra poi come l'analisi delle superficie quartiche monoidali (cioè contenenti un punto triplo...

[unknown]

Takato Uehara (0)

Annales de l’institut Fourier

[unknown]

Indranil Biswas, Carlos Florentino (0)

Annales de l’institut Fourier

[unknown]

Chiara Camere (0)

Annales de l’institut Fourier

Vanishing cycles, the generalized Hodge Conjecture and Gröbner bases

Ichiro Shimada (2004)

Banach Center Publications

Let X be a general complete intersection of a given multi-degree in a complex projective space. Suppose that the anti-canonical line bundle of X is ample. Using the cylinder homomorphism associated with the family of complete intersections of a smaller multi-degree contained in X, we prove that the vanishing cycles in the middle homology group of X are represented by topological cycles whose support is contained in a proper Zariski closed subset T of X with certain codimension. In some cases, by...

Vanishing of sections of vector bundles on 0-dimensional schemes

Edoardo Ballico (1999)

Commentationes Mathematicae Universitatis Carolinae

Here we give conditions and examples for the surjectivity or injectivity of the restriction map H 0 ( X , F ) H 0 ( Z , F | Z ) , where X is a projective variety, F is a vector bundle on X and Z is a “general” 0 -dimensional subscheme of X , Z union of general “fat points”.

Currently displaying 1581 – 1600 of 1685