Displaying 41 – 60 of 98

Showing per page

The optimality of the Bounded Height Conjecture

Evelina Viada (2009)

Journal de Théorie des Nombres de Bordeaux

In this article we show that the Bounded Height Conjecture is optimal in the sense that, if V is an irreducible subvariety with empty deprived set in a power of an elliptic curve, then every open subset of V does not have bounded height. The Bounded Height Conjecture is known to hold. We also present some examples and remarks.

The p -rank stratification of Artin-Schreier curves

Rachel Pries, Hui June Zhu (2012)

Annales de l’institut Fourier

We study a moduli space 𝒜𝒮 g for Artin-Schreier curves of genus g over an algebraically closed field k of characteristic p . We study the stratification of 𝒜𝒮 g by p -rank into strata 𝒜𝒮 g . s of Artin-Schreier curves of genus g with p -rank exactly s . We enumerate the irreducible components of 𝒜𝒮 g , s and find their dimensions. As an application, when p = 2 , we prove that every irreducible component of the moduli space of hyperelliptic k -curves with genus g and 2 -rank s has dimension g - 1 + s . We also determine all pairs ( p , g ) for...

The Schottky-Jung theorem for Mumford curves

Guido Van Steen (1989)

Annales de l'institut Fourier

The Schottky-Jung proportionality theorem, from which the Schottky relation for theta functions follows, is proved for Mumford curves, i.e. curves defined over a non-archimedean valued field which are parameterized by a Schottky group.

Currently displaying 41 – 60 of 98