Sur le corps de définition de certaines courbes elliptiques à multiplications complexes.
Nous donnons une démonstration du fait que le groupe des classes d’un schéma irréductible de type fini sur est de type fini. Cette preuve ne repose pas sur le théorème de Mordell-Weil-Néron, mais plutôt sur le théorème de Mordell-Weil classique, le théorème de Néron-Severi et les théorèmes de Hironaka et de Jong sur la résolution des singularités. Nous en déduisons quelques corollaires, parmi lesquels le théorème de Mordell-Weil-Néron lui-même.
Nous nous intéressons à la cohomologie d’intersection de la compactification minimale des variétés de Siegel à certaines places de mauvaise réduction. Nous calculons la trace semi-simple du morphisme de Frobenius sur les fibres des cycles proches du complexe d’intersection. Nous obtenons une généralisation commune de résultats de Morel et de Haines et Ngô.