Cohomologie de Galois et cohomologie des variétés algébriques réelles ; applications aux surfaces rationnelles
Le théorème de Borel-Weil-Bott décrit la cohomologie des fibrés en droites sur les variétés de drapeaux. On généralise ici ce théorème à une plus grande classe de variétés projectives : les variétés magnifiques de rang minimal.
L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base de (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base de définie par Kostant et Kumar dans...
We compute the unique nonzero cohomology group of a generic - linearized locally free -module, where is the identity component of a complex classical Lie supergroup and is an arbitrary parabolic subsupergroup. In particular we prove that for this cohomology group is an irreducible -module. As an application we generalize the character formula of typical irreducible -modules to a natural class of atypical modules arising in this way.
We explain the philosophy behind the computations in [BDP] and place them in a wider conceptual setting. We also outline, for toric varieties, the resulting equivalent approach to some key results in that theory.
In this paper we investigate the problem of finding an explicit element whose toric residue is equal to one. Such an element is shown to exist if and only if the associated polytopes are essential. We reduce the problem to finding a collection of partitions of the lattice points in the polytopes satisfying a certain combinatorial property. We use this description to solve the problem when and for any when the polytopes of the divisors share a complete flag of faces. The latter generalizes earlier...
We describe how the graded minimal resolution of certain semigroup algebras is related to the combinatorics of some simplicial complexes. We obtain characterizations of the Cohen-Macaulay and Gorenstein conditions. The Cohen-Macaulay type is computed from combinatorics. As an application, we compute explicitly the graded minimal resolution of monomial both affine and simplicial projective surfaces.
Les variétés abéliennes principalement polarisées admettent un espace des modules grossier qu’on sait compactifier de plusieurs façons (compactification de Satake, compactifications toroïdales). Cependant, le problème s’est posé de construire une compactification “modulaire”en termes d’objets géométriques qui permettent de décrire les points du bord. On souhaite aussi compactifier l’application de Torelli qui à chaque courbe algébrique, projective et lisse, associe sa jacobienne. L’exposé présente...
Nous construisons explicitement la normalisation de la compactification de Bott-Samelson-Demazure-Hansen des variétés de Deligne-Lusztig dans leur revêtement et retrouvons ainsi un résultat de Deligne-Lusztig sur la monodromie locale autour des diviseurs de la compactification.