Page 1 Next

Displaying 1 – 20 of 28

Showing per page

On certain non-constructive properties of infinite-dimensional vector spaces

Eleftherios Tachtsis (2018)

Commentationes Mathematicae Universitatis Carolinae

In set theory without the axiom of choice ( AC ), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC LO (AC for linearly ordered families of nonempty sets)—and hence AC WO (AC for well-ordered families of nonempty sets)— DC ( < κ ) (where κ is an uncountable regular cardinal), and “for every infinite set X , there is a bijection f : X { 0 , 1 } × X ”, implies the statement “there exists a field F such that every vector...

On sequences not enjoying Schur’s property

Pablo Jiménez-Rodríguez (2017)

Open Mathematics

Here we proved the existence of a closed vector space of sequences - any nonzero element of which does not comply with Schur’s property, that is, it is weakly convergent but not norm convergent. This allows us to find similar algebraic structures in some subsets of functions.

On sets of vectors of a finite vector space in which every subset of basis size is a basis

Simeon Ball (2012)

Journal of the European Mathematical Society

It is shown that the maximum size of a set S of vectors of a k -dimensional vector space over 𝔽 q , with the property that every subset of size k is a basis, is at most q + 1 , if k p , and at most q + k p , if q k p + 1 4 , where q = p k and p is prime. Moreover, for k p , the sets S of maximum size are classified, generalising Beniamino Segre’s “arc is a conic” theorem. These results have various implications. One such implication is that a k × ( p + 2 ) matrix, with k p and entries from 𝔽 p , has k columns which are linearly dependent. Another is...

On the angles between certain arithmetically defined subspaces of 𝐂 n

Robert Brooks (1987)

Annales de l'institut Fourier

If { v i } and { w j } are two families of unitary bases for C n , and θ is a fixed number, let V n and W n be subspaces of C n spanned by [ θ · n ] vectors in { v i } and { w j } respectively. We study the angle between V n and W n as n goes to infinity. We show that when { v i } and { w j } arise in certain arithmetically defined families, the angles between V n and W n may either tend to 0 or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.

Currently displaying 1 – 20 of 28

Page 1 Next