Page 1

Displaying 1 – 2 of 2

Showing per page

Zero-term rank preservers of integer matrices

Seok-Zun Song, Young-Bae Jun (2006)

Discussiones Mathematicae - General Algebra and Applications

The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.

Zero-term ranks of real matrices and their preservers

LeRoy B. Beasley, Young Bae Jun, Seok-Zun Song (2004)

Czechoslovak Mathematical Journal

Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the m × n real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix.

Currently displaying 1 – 2 of 2

Page 1