Regions containing eigenvalues of a matrix.
Two inequalities for the Laplacian spread of graphs are proved in this note. These inequalities are reverse to those obtained by Z. You, B. Liu: The Laplacian spread of graphs, Czech. Math. J. 62 (2012), 155–168.
Some convergent sequences of the lower bounds of the minimum eigenvalue for the Hadamard product of a nonsingular M-matrix B and the inverse of a nonsingular M-matrix A are given by using Brauer’s theorem. It is proved that these sequences are monotone increasing, and numerical examples are given to show that these sequences could reach the true value of the minimum eigenvalue in some cases. These results in this paper improve some known results.
In this paper we obtain several tight bounds on different types of alliance numbers of a graph, namely (global) defensive alliance number, global offensive alliance number and global dual alliance number. In particular, we investigate the relationship between the alliance numbers of a graph and its algebraic connectivity, its spectral radius, and its Laplacian spectral radius.