Page 1

Displaying 1 – 5 of 5

Showing per page

Latent roots of lambda-matrices, Kronecker sums and matricial norms

José S. L. Vitória (1980)

Aplikace matematiky

Kronecker sums and matricial norms are used in order to give a method for determining upper bounds for A where A is a latent root of a lambda-matrix. In particular, upper bounds for z are obtained where z is a zero of a polynomial with complex coefficients. The result is compared with other known bounds for z .

Log-majorizations and norm inequalities for exponential operators

Fumio Hiai (1997)

Banach Center Publications

Concise but self-contained reviews are given on theories of majorization and symmetrically normed ideals, including the proofs of the Lidskii-Wielandt and the Gelfand-Naimark theorems. Based on these reviews, we discuss logarithmic majorizations and norm inequalities of Golden-Thompson type and its complementary type for exponential operators on a Hilbert space. Furthermore, we obtain norm convergences for the exponential product formula as well as for that involving operator means.

Lower bounds for the largest eigenvalue of the gcd matrix on { 1 , 2 , , n }

Jorma K. Merikoski (2016)

Czechoslovak Mathematical Journal

Consider the n × n matrix with ( i , j ) ’th entry gcd ( i , j ) . Its largest eigenvalue λ n and sum of entries s n satisfy λ n > s n / n . Because s n cannot be expressed algebraically as a function of n , we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that λ n > 6 π - 2 n log n for all n . If n is large enough, this follows from F. Balatoni (1969).

Currently displaying 1 – 5 of 5

Page 1