Ein einfacher geometrischer Beweis für die Determinantenungleichung von O. Szasz.
The main aim is to estimate the noncentrality matrix of a noncentral Wishart distribution. The method used is Leung's but generalized to a matrix loss function. Parallelly Leung's scalar noncentral Wishart identity is generalized to become a matrix identity. The concept of Löwner partial ordering of symmetric matrices is used.
We consider inequalities between sums of monomials that hold for all p-Newton sequences. This continues recent work in which inequalities between sums of two, two-term monomials were combinatorially characterized (via the indices involved). Our focus is on the case of sums of three, two-term monomials, but this is very much more complicated. We develop and use a theory of exponential polynomial inequalities to give a sufficient condition for general monomial sum inequalities, and use the sufficient...
We extend a monotonicity result of Wang and Gong on the product of positive definite matrices in the context of semisimple Lie groups. A similar result on singular values is also obtained.
We give extensions of inequalities of Araki-Lieb-Thirring, Audenaert, and Simon, in the context of semisimple Lie groups.
We characterize linear operators that preserve sets of matrix ordered pairs which satisfy extreme properties with respect to maximal column rank inequalities of matrix sums over semirings.