Some characteristic quantities associated with homogeneous -type and -type functions.
In this paper we consider the problem of finding upper bounds of certain matrix operators such as Hausdorff, Nörlund matrix, weighted mean and summability on sequence spaces and Lorentz sequence spaces , which was recently considered in [9] and [10] and similarly to [14] by Josip Pecaric, Ivan Peric and Rajko Roki. Also, this study is an extension of some works by G. Bennett on spaces, see [1] and [2].
In this paper we firstly give majorization relations between the vectors Fn = {f0, f1, . . . , fn−1},Ln = {l0, l1, . . . , ln−1} and Pn = {p0, p1, . . . , pn−1} which constructed with fibonacci, lucas and pell numbers. Then we give upper and lower bounds for determinants, Euclidean norms and Spectral norms of Gram matrices GF=〈Fn,Fni〉, GL=〈Ln,Lni〉, GP=〈Pn,Pni〉, GFL=〈Fn,Lni〉, GFP=〈Fn,Pni〉.
Stępniak [Linear Algebra Appl. 151 (1991)] considered the problem of equivalence of the Löwner partial order of nonnegative definite matrices and the Löwner partial order of squares of those matrices. The paper was an important starting point for investigations of the problem of how an order between two matrices A and B from different sets of matrices can be preserved for the squares of the corresponding matrices A² and B², in the sense of the Löwner partial ordering, the star partial ordering,...
We focus on stochastic comparisons of lifetimes of series and parallel systems consisting of independent and heterogeneous new Pareto type components. Sufficient conditions involving majorization type partial orders are provided to obtain stochastic comparisons in terms of various magnitude and dispersive orderings which include usual stochastic order, hazard rate order, dispersive order and right spread order. The usual stochastic order of lifetimes of series systems with possibly different scale...