Hochschild cohomology and deformations of Clifford-Weyl algebras.
After an overview of Hurwitz pairs we are showing how to actually construct them and discussing whether, for a given representation, all Hurwitz pairs of the same type are equivalent. Finally modules over a Clifford algebra are considered with compatible inner products; the results being then aplied to Hurwitz pairs.
The article is devoted to a generalization of Clifford and Grassmann algebras for the case of vector spaces over the field of complex numbers. The geometric interpretation of such generalizations are presented. Multieuclidean geometry is considered as well as the importance of it in physics.