The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Low rank Tucker-type tensor approximation to classical potentials

B. Khoromskij, V. Khoromskaia (2007)

Open Mathematics

This paper investigates best rank-(r 1,..., r d) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r 1,..., r d) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer...

Low-rank tensor representation of Slater-type and Hydrogen-like orbitals

Martin Mrovec (2017)

Applications of Mathematics

The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization...

Currently displaying 1 – 5 of 5

Page 1