Natural group actions on tensor products of three real vector spaces with finitely many orbits.
A new lower bound and a new upper bound for the minimum eigenvalue of an 𝓜-tensor are obtained. It is proved that the new lower and upper bounds improve the corresponding bounds provided by He and Huang (J. Inequal. Appl., 2014, 2014, 114) and Zhao and Sang (J. Inequal. Appl., 2016, 2016, 268). Finally, two numerical examples are given to verify the theoretical results.
Some new criteria for identifying H-tensors are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.
New iterative codes for identifying 𝓗 -tensor are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor, i.e., an even-degree homogeneous polynomial form are given. Advantages of results obtained are illustrated by numerical examples.
Let A, B and C be matrices. We consider the matrix equations Y-AYB=C and AX-XB=C. Sharp norm estimates for solutions of these equations are derived. By these estimates a bound for the distance between invariant subspaces of matrices is obtained.