The group of commutativity preserving maps on strictly upper triangular matrices
Let be the algebra of all strictly upper triangular matrices over a unital commutative ring . A map on is called preserving commutativity in both directions if . In this paper, we prove that each invertible linear map on preserving commutativity in both directions is exactly a quasi-automorphism of , and a quasi-automorphism of can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.
Variables finitas condicionalmente especificadas.
En este trabajo se estudia la existencia y unicidad de vectores bidimensionales de variables discretas con recorrido finito, cuando se fijan sus distribuciones condicionadas. Para ello, tras repasar la literatura existente sobre el tema, proporcionamos diversos resultados que relacionan diversos temas de álgebra matricial, especialmente la descomposición singular, con el problema que nos ocupa.
Vector spaces of matrices of low rank and vector bundles on projective spaces: An addendum to a paper by Eisenbud and Harris.
Wilks' factorization of the complex matrix variate Dirichlet distributions.
In this paper, it has been shown that the complex matrix variate Dirichlet type I density factors into the complex matrix variate beta type I densities. Similar result has also been derived for the complex matrix variate Dirichlet type II density. Also, by using certain matrix transformations, the complex matrix variate Dirichlet distributions have been generated from the complex matrix beta distributions. Further, several results on the product of complex Wishart and complex beta matrices with...
Об индексе импримитивности неотрицательных матриц
Об одной комбинаторной теореме и ее применении к неотрицательным матрицам